
Explanation of Retrieval Mismatches in
Recommender System Dialogues

David McSherry

School of Computing and Information Engineering, University

of Ulster, Coleraine BT52 1SA, Northern Ireland
dmg.mcsherry@ulster.ac.uk

Abstract. A limitation of similarity-based retrieval in recommender systems
that appears to have received little attention is the absence of a formal
mechanism for explaining the retrieval mismatches that occur when there is no
product that exactly matches the requirements of the user. To address this issue,
we present techniques for generating explanations of retrieval mismatches to
help users understand “what went wrong” with their queries and how to
construct more successful queries.

1 Introduction

An advantage of case-based reasoning (CBR) as an approach to product
recommendation is that in the absence of a product that exactly matches the user’s
query, she can be shown the products that are most similar to her query (Wilke et al.,
1998). A basic premise in the approach is that one of the recommended cases may be
acceptable to the user even if it fails to satisfy all her requirements. However, recent
research has highlighted some important limitations of similarity-based retrieval. For
example, the most similar case may not be the one that is most acceptable to the user
(Burkhard, 1998; Smyth and McClave, 2001). A related issue is that the most similar
cases also tend to be very similar to each other, with the result that they may not be
sufficiently representative of compromises that the user may be prepared to make
(McSherry, 2003). As noted by Bridge and Ferguson (2002), users may also have
difficulty understanding why one product is recommended while another is not
recommended.
 Techniques recently developed to address these limitations include:

 Retrieval algorithms that attempt to achieve a better balance between the similarity
and diversity of the retrieved cases (McSherry, 2002a; Smyth and McClave, 2001),
or which deliver recommendations that are inherently diverse (Bridge and Ferguson,
2002)
 A retrieval algorithm in which similarity and compromise play complementary
roles, thus increasing the likelihood that one of the recommended products will be
acceptable to the user (McSherry, 2003)
 Automatically-generated explanations of why a product has been recommended in
terms of the compromises it involves (McSherry, 2002b; McSherry, 2003)

 Another limitation of similarity-based retrieval, and one we believe to be
particularly important in product recommendation, is the absence of a formal

mechanism for explaining the retrieval mismatches that occur when there is no exact
match for the user’s query. In contrast to approaches that use exact matching and rely
on constraint relaxation techniques to recover from retrieval failures (e.g., Bridge,
2002), retrieval mismatches may not even be acknowledged in similarity-based
retrieval. Feedback provided, if any, tends to be limited to simple techniques such as
highlighting the attributes in a recommended case whose values differ from the
preferred values specified in the user’s query.
 Recent work in mixed-initiative CBR has highlighted the importance of dialogue
features inspired by human problem-solving behaviours, such as explanatory
feedback provided at the initiative of the system or at the request of the user (Aha et
al., 2001; Bridge, 2002; Göker and Thompson, 2000; McSherry, 2001; McSherry,
2002c; Ricci et al., 2002). In a troubleshooting dialogue with a human expert, for
example, it would be unusual not to receive some feedback, such as a comment that a
reported symptom eliminates a certain diagnosis (McSherry, 2001). It is equally
natural for a customer engaged in dialogue with a human salesperson to expect
feedback, such as an explanation that a certain feature is not available in her preferred
price range.
 In this paper, we present techniques for generating explanations of retrieval
mismatches to help users understand “what went wrong” with their queries and how
to construct more successful queries. In Sections 2 and 3, we describe our approach
and its implementation in a recommender system prototype called ShowMe. Related
work is discussed in Section 4 and our conclusions are presented in Section 5.

2 Explanation of Retrieval Mismatches

Our approach is based on the way we believe a human salesperson would respond to
a customer whose expectations she believed to be unrealistic. For example, if a
customer asks for a laptop computer with a 19 inch screen made by Dell, the
salesperson is likely to point out that there is no such thing as a laptop with a 19 inch
screen. Implicitly, the salesperson is also telling the customer that there is no problem
getting a Dell laptop, or a Dell PC (e.g., a tower system) with a 19 inch screen. While
a CBR system that has no knowledge of what products are available elsewhere cannot
say for certain that there is no such thing as a laptop with a 19 inch screen, it can tell
the user that there is no such product in the case library.
 More formally, we believe that a natural approach to explaining retrieval
mismatches is to draw the user’s attention to sub-queries of her query that are not
covered by the case library. We say that a query is covered by the case library if
there is at least one case in the case library that exactly matches the query. Typically
in recommender systems, a query Q over a subset AQ of the case attributes A is
represented as a set of attribute-values pairs. We refer to |AQ| as the length of the
query and for each a ∈ AQ denote by πa(Q) the preferred value of a that the user has
specified in her query.

Definition 1. We say that a given query Q* is a sub-query of another query Q if AQ*
⊆ AQ and πa(Q*) = πa(Q) for all a ∈ AQ*.

 Q1234 ×

 Q123 × Q124 × Q134 Q234 ×

 Q12 × Q13 Q14 Q23 × Q24 Q34

 Q1 Q2 Q3 Q4

Fig. 1. Sub-queries of an example query involving four attributes. The sub-queries marked ‘×’

are those which, in our example, are not covered by the case library

 To illustrate our approach, Fig. 1 shows all sub-queries (apart from the empty
query) of a query Q1234 involving four attributes a1, a2, a3, and a4. We denote by Q134
the sub-query involving only the attributes a1, a3, and a4, by Q34 the sub-query
involving only a3 and a4, and by Q4 the sub-query involving only a4. We use a similar
notation for each of the other sub-queries of Q1234. Bearing in mind that a given query
is a sub-query of itself, we can see that Q1234 has 15 sub-queries. The four single-
attribute queries of Q1234 are bound to be covered if, as we assume in this paper, the
user’s choice of an ideal value for each attribute is restricted to values that occur in
the case library. However, there is no guarantee that any of the other sub-queries are
covered. We will assume in this example that all sub-queries of Q1234 are covered
except those that are marked ‘×’ in Fig. 1.
 The question is, how should the absence of a case that exactly matches the user’s
query be explained in this case? Our aim is to construct an explanation of the shortest
possible length that will enable the user to avoid further retrieval mismatches that can
be predicted from the current mismatch. For example, if our explanation mentions
only that Q12 is not covered, the user may be tempted to try Q234 as her revised query.
Of course, this can only lead to a further retrieval mismatch that could have been
avoided with a more detailed explanation. On the other hand, if we tell the user that
Q12 and Q23 are not covered, she can easily infer that Q123, Q124, and Q234 are not
covered, and also that her original query Q1234 is not covered. The user is also entitled
to infer that Q134 must be covered, as none of its sub-queries is mentioned in our
explanation.
 In general, an explanation of a retrieval mismatch (that is, the absence of an exact
match for the user’s query) will consist of one or more sub-queries of the user’s query
that are not covered by the case library, presented in non-decreasing order of query
length. We are now in a position to define more formally what we mean by a minimal
explanation of a retrieval mismatch.

Definition 2. A minimal explanation of a retrieval mismatch for a given query Q is a
sequence Q1, Q2, ..., Qn of sub-queries of Q such that:

 none of Q1, Q2, ..., Qn is covered by the case library
 for 1 ≤ r ≤ s ≤ n, sr QQ AA ≤

 for 1 ≤ r, s ≤ n, Qr is not a sub-query of Qs
 for any sub-query Q* of Q that is not covered by the case library, there

exists r ≤ n such that Qr is a sub-query of Q*

 Our algorithm for generating minimal explanations of retrieval mismatches,
which we call Explainer, is outlined in Fig. 2. SubQueries is a list of all sub-queries,
in non-decreasing order of query length, of a query for which a retrieval mismatch
has occurred. Explanation is the (initially empty) list of sub-queries selected from
SubQueries to explain the retrieval mismatch. For each sub-query Qx it encounters
that is not covered by the case library, Explainer adds Qx to the explanation and
deletes any sub-query Qy that includes Qx as a sub-query from the remaining list of
candidate sub-queries.

algorithm Explainer(SubQueries, CaseLibrary)
begin
 Explanation ← φ
 while |SubQueries| > 0 do
 begin
 Qx ← first(SubQueries)
 Deletions ← {Qx}
 if Qx is not covered by CaseLibrary
 then begin
 Explanation ← Explanation ∪ {Qx}
 for all Qy ∈ rest(SubQueries) do
 begin
 if Qx is a sub-query of Qy
 then Deletions ← Deletions ∪ {Qy}
 end
 end
 SubQueries ← SubQueries - Deletions
 end
 return Explanation
end

Fig. 2. Algorithm for generating minimal explanations of retrieval mismatches

 To help make our explanations of retrieval mismatches more understandable to
users, they are expressed in terms of “combinations of features” in the user’s query
for which there is no exact match (e.g., screen size = 19, type = laptop).

3 Recommendation in ShowMe

We now present an implementation of our approach in a recommender system
prototype called ShowMe. The example dialogue in Fig. 3 is based on the PC case
library (McGinty and Smyth, 2002), which contains the descriptions of 120 personal
computers. Attributes of the retrieved cases are listed in the order: make, processor,
speed, screen size, type, memory, hard-disk size, and price. The similarity of each
case to the user’s query is shown in brackets. Minor editing in the interest of clarity
includes the format of the queries entered by the user. Because of space restrictions,
the size of the ShowMe retrieval set (the number of cases recommended on each
cycle) is limited here to three.

ShowMe: Please enter your query.

User: make = Dell, processor = Intel Pentium, type = laptop, screen size = 17

ShowMe: Sorry, there is no match for the following combination of features in

your query:

 type = laptop, screen size = 17

 However, you may wish to consider the following alternatives:

 Case 33: Dell, Intel Pentium, 900, 15, laptop, 256, 10, 1345 (0.95)
 Case 27: Dell, Intel Pentium, 1000, 15, laptop, 512, 30, 1429 (0.95)
 Case 34: Dell, Intel Pentium, 900, 14, laptop, 256, 10, 1169 (0.93)

ShowMe: Please enter your query.

User: make = Dell, processor = Intel Pentium, screen size = 17

ShowMe: The following cases are recommended:

 Case 56: Dell, Intel Pentium, 1700, 17, desktop, 512, 40, 1857 (1)
 Case 55: Dell, Intel Pentium, 1900, 17, desktop, 2000, 40, 1507 (1)
 Case 54: Dell, Intel Pentium, 1600, 17, desktop, 512, 20, 1417 (1)

Fig. 3. Example recommendation dialogue

 The dialogue begins with ShowMe inviting the user to enter a query. Before
presenting its recommendations, ShowMe searches the case library for a case that
exactly matches the user’s query, but is unable to find an exact match. It now
examines each sub-query of the user’s query to identify the cause of the retrieval
mismatch and discovers that the only (proper) sub-query of her query that is not
covered by the case library is:

 {type = laptop, screen size = 17}

After explaining why there is no exact match for the user’s query, ShowMe retrieves
and displays the three products that are most similar to the user’s query. In the light
of the explanation provided by ShowMe, the user (who would really like a 17 inch
screen) decides to revise her query by omitting her preference for a laptop. With a
form-based interface, of course, it would be necessary only for the user to change a
single field in her original query. On this occasion, the user’s query is successful and
ShowMe is able to recommend three cases (in fact there are several more) that match
her requirements exactly.
 The results produced in response to the user’s initial query illustrate a known
limitation of similarity-based retrieval, namely that the products that are most similar
to the target query also tend to be very similar to each other. The three cases
recommended by ShowMe match the user’s query on make and type but not on
screen size. While the user may be prepared to compromise on type but not on make
or screen size, the retrieval set includes no alternative that offers this compromise.
However, there is nothing to prevent our approach from being combined with a
retrieval strategy designed to address this issue such as diversity-conscious retrieval
(McSherry, 2002a; Smyth and McClave, 2001) or compromise-driven retrieval
(McSherry, 2003).

4 Related Work

A growing number of conversational approaches to product recommendation rely on
constraint relaxation techniques to recover from retrieval failures caused by the
absence of a product that exactly meets the requirements of the user. Göker and
Thompson’s (2000) Adaptive Place Advisor is an in-car recommender system for
“places to go” in which the selection of the next attribute to be constrained, or relaxed
if there is no alternative that meets the requirements of the user, is based on an
information gain measure. Ricci et al.’s (2002) Intelligent Travel Recommender
(ITR) has a query relaxation component that advises the user about what to do when
none of the available travel items exactly matches her requirements. For each
constraint in the target query that can be relaxed without affecting the user’s
information goal, it tells the user how many results she will get if she relaxes that
constraint. For example, the user might be told:

If you don’t care about “Accept Pets” you obtain 3 results

 Whereas the “best” constraint to be relaxed is suggested at the initiative of the
system in the Adaptive Place Advisor, the choice of which constraint to relax is left to
the user in ITR. Another system in which failure to retrieve a product that exactly
matches the user’s requirements results in her being asked to choose a constraint to be
relaxed is Sermo, a basic prototype developed by Bridge (2002) to illustrate the
potential role of dialogue grammars in conversational recommender systems.
 One thing that the Adaptive Place Advisor, ITR, and Sermo have in common is
their treatment of the user’s requirements, or at least some of her requirements, as
hard constraints. Their use of query relaxation as a means of recovery from retrieval
failure is a significant improvement on traditional database approaches that leave the

user with no option but to try again with a revised query when there is no product that
exactly matches her requirements (Wilke et al., 1998). However, a limitation of
constraint relaxation is that recovery may not be possible by relaxing a single
constraint. In a recommender system for cars, for example, the following query is
bound to fail as Peugeot cars originate in France (or Great Britain) and a car can be
described as a hatchback only if it has 3 doors or 5 doors:

{make = Peugeot, origin = Japan, body style = hatchback, doors = 4}

No matter which constraint the user chooses to relax, there will still be no exact
match for her query.
 In contrast, our approach to explaining retrieval mismatches works equally well
even if the problem cannot be resolved by relaxing a single constraint. If we assume
in the above example that the available products are adequately covered by the case
library, then the user would simply be advised that there is no exact match for the
following feature combinations in her query:

 make = Peugeot, origin = Japan
 body style = hatchback, doors = 4

The user would be entitled to infer that a reasonable strategy might be to revise her
query to:

 {make = Peugeot, body style = hatchback, doors = 5}

 Perhaps this would not be a trivial step for users with little experience of query
formulation. However, the user is likely to gain additional clues to help her construct
a more realistic query by browsing the list of most similar cases presented by the
system in response to her original query (e.g., if one of them is a 5-door Peugeot
hatchback). Also in contrast to approaches in which the absence of an exact match is
regarded as a retrieval failure, the recommendation process is not interrupted in our
approach by engaging the user in a recovery dialogue. Instead, the user has the
options of choosing one of the recommended alternatives or revising her query in the
light of the explanation provided.
 Göker and Thompson (2000) make an important point about the environment in
which the user interacts with the Adaptive Place Advisor and how this affects the way
in which recommendations are delivered by the system. The fact that the user is
engaged in an activity (driving her car) that must take priority over the
recommendation process dictates that recommendations must be delivered in spoken
dialogue rather than being presented visually. In this situation, the traditional
approach of presenting the user with a ranked list of recommended alternatives,
which may include none that exactly matches her requirements, loses much of its
appeal. As envisaged in the Adaptive Place Advisor, the ability to take the initiative
in dealing with retrieval failures, if allowed to occur, is likely to be an essential
requirement in recommender systems that rely on spoken dialogue. Whether
explanations of retrieval mismatches can effectively compensate for the limitations of

similarity-based retrieval in spoken dialogue remains an issue to be addressed by
further research.

5 Conclusions

In the absence of a product that exactly matches the requirements of the user, existing
recommender systems may not even acknowledge that a retrieval mismatch has
occurred. Instead they often adopt a “What you see is the best we’ve got” approach
that is unlikely to be considered helpful by users. Our approach to addressing this
issue is based on explanations of retrieval mismatches that are designed to minimise
cognitive load by providing the minimum information needed to avoid similar
problems in further queries. In contrast to retrieval approaches that regard the absence
of an exact match as a retrieval failure and engage the user in a recovery dialogue,
our simple strategy of explaining why there is no exact match has the advantage of
preserving the economy of dialogue associated with similarity-based retrieval.

Acknowledgements

The author would like to thank David W. Aha and Kalyan Moy Gupta for their
insightful comments on a previous version of this paper. Thanks also to Lorraine
McGinty for providing the PC case library used in our example recommendation
dialogue.

References

1. Aha, D.W., Breslow, L.A., Muńoz-Avila, H.: Conversational Case-Based Reasoning.
Applied Intelligence 14 (2001) 9-32

2. Bridge, D.: Towards Conversational Recommender Systems: a Dialogue Grammar
Approach. In: Aha, D.W. (ed.) Proceedings of the EWCBR-02 Workshop on Mixed-
Initiative Case-Based Reasoning (2002) 9-22

3. Bridge, D., Ferguson, A.: An Expressive Query Language for Product Recommender
Systems. Artificial Intelligence Review, 18 (2002) 269-307

4. Burkhard, H.-D.: Extending Some Concepts of CBR - Foundations of Case Retrieval
Nets. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based
Reasoning Technology. Springer-Verlag, Berlin Heidelberg New York (1998) 17-50

5. Göker, M.H., Thompson, C.A.: Personalized Conversational Case-Based
Recommendation. In: Blanzieri, E., Portinale, L. (eds.) Advances in Case-Based
Reasoning. LNAI, Vol. 1898. Springer-Verlag, Berlin Heidelberg (2000) 99-111

6. McGinty, L., Smyth, B.: Comparison-Based Recommendation. In: Craw, S., Preece, A.
(eds.) Advances in Case-Based Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin
Heidelberg New York (2002) 575-58

7. McSherry, D.: Interactive Case-Based Reasoning in Sequential Diagnosis. Applied
Intelligence 14 (2001) 65-76

8. McSherry, D.: Diversity-Conscious Retrieval. In: Craw, S., Preece, A. (eds.) Advances in
Case-Based Reasoning. LNAI, Vol. 2416. Springer-Verlag, Berlin Heidelberg New York
(2002a) 219-233

9. McSherry, D.: Recommendation Engineering. Proceedings of the Fifteenth European
Conference on Artificial Intelligence. IOS Press (2002b) 86-90

10. McSherry, D.: Mixed-Initiative Dialogue in Case-Based Reasoning. In: Aha, D.W. (ed.)
Proceedings of the EWCBR-02 Workshop on Mixed-Initiative Case-Based Reasoning
(2002c) 1-8

11. McSherry, D.: Similarity and Compromise. In: Ashley, K., Bridge, D. (eds.) Case-Based
Reasoning Research and Development. LNAI, Vol. 2689. Springer-Verlag, Berlin
Heidelberg New York (2003)

12. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory
System. In: Craw, S., Preece, A. (eds.) Advances in Case-Based Reasoning. LNAI, Vol.
2416. Springer-Verlag, Berlin Heidelberg New York (2002) 613-627

13. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.) Case-
Based Reasoning Research and Development. LNAI, Vol. 2080. Springer-Verlag, Berlin
Heidelberg New York (2001) 347-361

14. Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M.,
Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology.
Springer-Verlag, Berlin Heidelberg New York (1998) 91-113

	5 Conclusions

